Closing today: 4.3 ($\mathrm{max} / \mathrm{min}$) Closing Fri: $\quad 4.4$ (L'Hopital's rule) Closing Mon: $\quad 4.4-5$ (graphing)
Closing next Wed: 4.7(applied max/min) Final Exam, Saturday, March 11

1:30-4:20pm, Kane 130

4.4 L'Hopital's Rule

First, recall as we discussed many times at the beginning of the term:
(Assuming fand g cont. at a)

If $g(a) \neq 0$, then done! Ans $=\frac{f(a)}{g(a)}$.
If $g(a)=0$ and $f(a) \neq 0$, then examine each side of $x=a$ (look at the sign) Ans $=\infty,-\infty$, or $D N E$.

If $g(a)=0$ and $f(a)=0$ then use algebra to rewrite in a form that 'cancels' the denominator.

$$
\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=? ?
$$

L'Hopital's Rule (0/0 case)

Suppose $g(a)=0$ and $f(a)=0$
2. $\lim _{x \rightarrow 0} \frac{\sin (x)}{x}$
and f and g are differentiable at $x=a$, then

$$
\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}
$$

Examples:

1. $\lim _{x \rightarrow 4} \frac{16-x^{2}}{4-x}$

Aside: Sketch of derivation
Assume $g(a)=0$ and $f(a)=0$
(These explanations are for the case when $g^{\prime}(a)$ is not zero).

Explanation 1 (def' n of derivative)

$$
\frac{f^{\prime}(a)}{g^{\prime}(a)}=\frac{\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}}{\lim _{x \rightarrow a} \frac{g(x)-g(a)}{x-a}}
$$

provided these limits exist we have:

$$
\begin{aligned}
\frac{f^{\prime}(a)}{g^{\prime}(a)} & =\lim _{x \rightarrow a} \frac{\frac{f(x)-f(a)}{x-a}}{\frac{g(x)-g(a)}{x-a}} \\
& =\lim _{x \rightarrow a} \frac{f(x)-f(a)}{g(x)-g(a)}=\lim _{x \rightarrow a} \frac{f(x)}{g(x)}
\end{aligned}
$$

Explanation 2 (tangent line approx.):
The tangent lines for $f(x)$ and $g(x)$ at

$$
\begin{aligned}
& x=a \text { are } \\
& y=f^{\prime}(a)(x-a)+0 \\
& y=g^{\prime}(a)(x-a)+0
\end{aligned}
$$

And we know these approximate the functions $f(x)$ and $g(x)$ better and better the closer x gets to a , so Thus,
$\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a} \frac{f^{\prime}(a)(x-a)}{g^{\prime}(a)(x-a)}=\frac{f^{\prime}(a)}{g^{\prime}(a)}$

Sometimes you have to use it more than once.
Example:

$$
\lim _{x \rightarrow 1} \frac{x-\sin (x-1)-1}{(x-1)^{3}}
$$

L'Hopitals rule can also be used directly for the ∞ / ∞ case

Example:

1. $\lim _{x \rightarrow \infty} \frac{5 x+7}{6+13 x}$

$$
\text { 4. } \lim _{x \rightarrow \infty} \frac{3 x+1}{\sqrt{9+4 x^{2}}}
$$

2. $\lim _{x \rightarrow \infty} \frac{\ln (\mathrm{x})}{x}$

Other indeterminant forms:
$0 \cdot \infty$: (rewrite as a fraction) $\lim _{x \rightarrow 0^{+}} x \ln (x)$
$\infty-\infty$: (combine into a fraction) (example from our midterm)
$\lim _{t \rightarrow \infty} \frac{2}{t(1+3 t)^{2}}-\frac{2}{t}$
$\lim _{x \rightarrow 0^{+}} x \mathrm{e}^{1 / \mathrm{x}}$
$\mathbf{0}^{\mathbf{0}}, \infty^{\mathbf{0}}, \mathbf{1}^{\infty}$: (Use $\left.\ln ()\right)$

$$
\lim _{x \rightarrow \infty}\left(1+\frac{2}{x}\right)^{x}
$$

$\lim _{x \rightarrow 0^{+}} x^{x}$

Aside (you don't need to know this): You can use the techniques just The formula for compound interest is discussed to find this limit and

$$
A=P\left(1+\frac{r}{n}\right)^{n t}
$$ determine it is

$$
A=P e^{r t}
$$

$\mathrm{P}=$ starting balance, $\mathrm{A}=$ end balance This is the continuous compounding $r=$ annual rate, $n=$ number of times interest formula. interest is compounded each year, $t=$ number of years

In some bank accounts interest is computed once a month, for some every day, for some every second. If you wanted interested to always be computed (continuously), then the new formula would be
$A=\lim _{n \rightarrow \infty} P\left(1+\frac{r}{n}\right)^{n t}$

